首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   11篇
  国内免费   19篇
化学   85篇
晶体学   2篇
力学   131篇
综合类   2篇
数学   5篇
物理学   251篇
  2023年   5篇
  2022年   9篇
  2021年   9篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   6篇
  2016年   2篇
  2015年   12篇
  2014年   8篇
  2013年   35篇
  2012年   16篇
  2011年   47篇
  2010年   16篇
  2009年   26篇
  2008年   21篇
  2007年   25篇
  2006年   30篇
  2005年   18篇
  2004年   23篇
  2003年   21篇
  2002年   23篇
  2001年   10篇
  2000年   18篇
  1999年   5篇
  1998年   9篇
  1997年   17篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有476条查询结果,搜索用时 187 毫秒
91.
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%.  相似文献   
92.
This investigation explores the possibilities to reduce the pressure drop of a single-channel micro-evaporator. The availability of micro-technology to create three-dimensional structures at a micro-meter scale opens opportunities to better control process conditions in once-through boilers. However, process miniaturization possesses some inherent drawbacks as well. Among others, the relatively large pressure drop in a micro-system makes it rather unsuitable for low-pressure applications. Especially in phase-change processes, the pressure drop may become large due to the expansion in small-sized channels. To address this drawback, flow boiling relations for small diameter tubes are first studied. These relations show a general form of the empirical correlations. Using this formulation, reduction factors could be deduced for the momentum pressure drop and friction pressure drop in case of a conical channel. These theoretically derived reduction factors show that the total pressure drop can be reduced significantly. The momentum pressure drop completely vanishes for outflow/inlet diameter ratios of 6.3 in the case of water. The friction pressure drop is reduced by a factor of ten at an outflow/inlet diameter ratio larger than four. An experimental comparison using a five-times diameter increase shows that the estimated reduction factor approaches the theoretically derived value for higher water supplies.  相似文献   
93.
94.
This work represents an experimental basic research aimed to investigate the influence on the heat transfer rate of the ultrasounds, in free convection and in presence of liquid. In fact the ultrasonic waves induce, thanks to vibrations, turbulence on the dynamic field, and so an increase of the convection coefficient. The heater is a circular cylinder, immersed in distilled water, and warmed up by Joule effect. This study has carried on for 1 year at Energetics Department “L. Poggi”. The effect was observed since 1960s: different authors had studied the cooling effect due to the ultrasonic waves at different heat transfer regimes, especially from a thin platinum wire to water. We have chosen to investigate the subcooled boiling regime, because this one is the best condition for the heat transfer enhancement, according to the scientific literature. We have carried out a wide experimental study, varying the different water subcooling degrees, the ultrasonic generator power, the ultrasound frequency and the placement of the heater inside the ultrasonic tank, in function of the range of the values of heat flux per unit surface needed dissipating. These values were supplied us by a possible practical application of the ultrasonic streaming: the cooling of 3D highly integrated electronic components. These packaging systems should have to provide all future devices, such as electronics, actuators, sensors and antenna. In fact, for these systems the thermal problem is a critical challenge, because they do not have to overtake critical temperature, after that they could damage irreversibly. Moreover, the traditional cooling systems used in electronic do not seem to be useful for them. On the contrary, the results obtained with ultrasounds, allow heat transfer coefficient enhancement of about 50% to be reached.The purpose is to find out the set of optimal conditions, in order to apply successively all the results to a real packaging system.  相似文献   
95.
使用LabVIEW设计天平的串口通讯程序,快速采集了目标容器的质量变化,观测到了较为理想的Leiden‐frost现象,并数值分析了在标准大气压下不同金属材料的Leidenfrost温度点。  相似文献   
96.
低温流体尤其是液氮在航天、电子冷却、低温生物医疗与超导磁体与电缆等领域有着广泛的应用.文中对光滑与多孔表面上的流体核态沸腾换热与临界热流密度的研究进行了归纳;总结了低温流体池沸腾的研究现状;比较了低温流体与常见制冷剂以及水在物性上的主要差异;综合分析了加热表面材料、多孔层厚度、孔隙率、烧结颗粒直径、平均孔隙直径与压力等...  相似文献   
97.
Impinging a free water jet onto a heated flat plate was investigated with and without mesh screens. Increasing the jet velocity increased the surface cooling rate via turbulence increase. Lower temperature gradients existed due to the faster wetting front propagation for the water film to advance in shorter times. Decreasing the nozzle-to-block spacing slightly increased the cooling rates by counteracting effects of gravity acceleration and jet momentum dispersion. The turbulence role in the heat transfer enhancement was optimized via opposite changes in the strain rate and largest turbulence scale. Displacing the screens from the impingement zone increased the heat flux.  相似文献   
98.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   
99.
The flow boiling heat transfer characteristics of R134a in the multiport minichannel heat exchangers are presented. The heat exchanger was designed as the counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Two inner tubes were made from extruded multiport aluminium with the internal hydraulic diameter of 1.1 mm for 14 numbers of channels and 1.2 mm for eight numbers of channels. The outer surface areas of two inner test sections are 5979 mm2 and 6171 m2, while the inner surface areas are 13,545 mm2 and 8856 mm2 for 14 and eight numbers of channels, respectively. The outer tube of heat exchanger was made from circular acrylic tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at the heat fluxes between 15 and 65 kW/m2, mass flux of refrigerant between 300 and 800 kg/m2 s and saturation pressure ranging from 4 to 6 bar. For instance the boiling curve, average heat transfer coefficients are discussed. The comparison results of two test sections with different the number of channels are investigated. The results are also compared with nine existing correlations. The new correlation for predicting the heat transfer coefficient was also proposed.  相似文献   
100.
The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号